A Lower Bound for the First Eigenvalue of Second Order Elliptic Operators
نویسندگان
چکیده
منابع مشابه
Eigenvalue Multiplicities for Second Order Elliptic Operators on Networks Joachim
We present some general bounds for the algebraic and geometric multiplicity of eigenvalues of second order elliptic operators on finite networks under continuity and weighted Kirchhoff flow conditions at the vertices. In particular the algebraic multiplicity of an eigenvalue is shown to be strictly bounded from above by the number of vertices if there are no eigenfunctions vanishing in all node...
متن کاملPinching of the First Eigenvalue for Second Order Operators on Hypersurfaces of the Euclidean Space
We prove stability results associated with upper bounds for the first eigenvalue of certain second order differential operators of divergencetype on hypersurfaces of the Euclidean space. We deduce some applications to r-stability as well as to almost-Einstein hypersurfaces.
متن کاملOn a factorization of second order elliptic operators and applications
We show that given a nonvanishing particular solution of the equation (div p grad+q)u = 0, (1) the corresponding differential operator can be factorized into a product of two first order operators. The factorization allows us to reduce the equation (1) to a first order equation which in a two-dimensional case is the Vekua equation of a special form. Under quite general conditions on the coeffic...
متن کاملAbout the mass of certain second order elliptic operators
Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3 and let f ∈ C∞(M), such that the operator Pf := ∆g + f is positive. If g is flat near some point p and f vanishes around p, we can define the mass of Pf as the constant term in the expansion of the Green function of Pf at p. In this paper, we establish many results on the mass of such operators. In particular, if f := n−2 4(n−1) sg, ...
متن کاملA Lower Bound of the First Eigenvalue of a Closed Manifold with Negative Lower Bound of the Ricci Curvature
Along the line of the Yang Conjecture, we give a new estimate on the lower bound of the first non-zero eigenvalue of a closed Riemannian manifold with negative lower bound of Ricci curvature in terms of the in-diameter and the lower bound of Ricci curvature.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1968
ISSN: 0002-9939
DOI: 10.2307/2035512